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Abstract—In this paper, we consider the problem how to
interconnect an obtained d-hop MIS into a d-hop CDS. Firstly,
we deal with a simple case d = 2 and present a greedy
algorithm. Using this method, we can obtain a 2-hop CDS with
approximation ratio min{3β, 2β+2+2H(β−1)}, where β is the
ratio of 2-hop MIS with 2-hop CDS and H(·) is the harmonic
function. This ratio is better than the ratio using spanning tree
method. Finally, we generalize the algorithm for general case.

Keywords: connected dominating set, multi-hop virtual back-
bone, approximation algorithm, greedy strategy.

I. INTRODUCTION

Nowadays, wireless networks attract more and more at-
tention from both scientists and engineers. Without the wires,
messages in a wireless network are transmitted from one node
to another via radio waves between two wireless stations
within a transmission range. If two nodes are too far away
from each other, they will exchange messages through routing
protocols with the help of several intermediate nodes. Due to
the characteristics of wireless networks, the lack of physical
infrastructure brings the inefficiency and instability for infor-
mation transmission process.

To improve the performance of communication efficiency,
the researchers use connected dominating set (CDS) as the
virtual backbone of the wireless networks. Given a graph
G = (V,E), a dominating set (DS) of G is a sub-vertex-
set C such that for any vertex u ∈ V \C, there exists a vertex
v ∈ C with u and v are adjacent in G. Furthermore, if the
subgraph G[C] induced by C is connected, we call C is a
connect dominating set (CDS). To determine a minimum CDS
in a general graph, even in a unit disk graph (UDG), is NP-
Complete. There are so many works to give approximation
algorithms on CDS problems in general graphs and unit disk
graphs until now [2], [5], [7], [12].

If we separate the network into many clusters and choose
the vertices in CDS as cluster-heads, each node will send
message to its local cluster-head and information is exchanged
among those cluster-heads through more steady and responsi-
ble channels. It makes the whole network more reliable. Easy
to see, for a CDS, each cluster is really small, which only
includes nodes adjacent with the corresponding cluster-head.
In order to enlarge the size of clusters, super cluster-head is
presented, which can be at most d-hop away from the nodes
within its dominating range. The set of such super cluster-head

is called d-hop CDS. As the definition of CDS, given a graph
G = (V,E), a d-hop CDS of G is a subset C ⊆ V such that:
(i) G[C] is connected, and (ii) for any vertex u ∈ V \C, there
exists a vertex v ∈ C satisfying the distance of u and v at
most d, where the distance of two vertices in G is the length
of the shortest path interconnecting these two vertices. When
d = 2, we often call the 2-hop CDS as TCDS. The following
figure gives a example of CDS and TCDS in a same graph G.

Fig. 1. The top is a CDS and the bottom is a TCDS. The black vertices are
DS and 2-hop DS respectively, and the gray vertices are connectors. Both of
them are minimum.

Vuong and Huynh [13] proved that to find a minimum d-
hop CDS is NP-Complete in general graph, and later Nguyen
and Huynh [10] proved that d-hop CDS problem is also
NP-Complete in UDGs. Hence, a lot of literatures presented
heuristic and approximation algorithms to solve d-hop CDS
problem in unit disk graphs and general graphs [3], [11], [15].
Gao et al. [6] gave a two-step approximation algorithm for this
problem on UDGs. In that paper, they firstly found a d-hop DS
and then interconnected it by spanning tree method in the given
graph. Finally, they showed that the size of output is at most
(0.335r3+1.337r2+0.585r)opt+(3.338r3+0.5r2+0.585r),
where r = d+ 0.5 and opt is the size of the minimum d-hop
CDS in given graph. In [14], Wang et al. gave a PTAS for
computing a minimum d-hop DS for growth-bounded graphs
(including UDGs). Researchers also studied variants of the
problem, such as connected d-hop k-dominating set problem
[8], [16], 2-connected d-hop dominating set problem [9], etc.

In this paper, we mainly consider the second phase in two-
step method, that is, how to interconnect a given d-hop DS
into a d-hop CDS. Since the algorithm of first-step in [6]
can also be executed in general graphs, we only consider
the interconnection process in general graphs. To illuminate
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our idea better, we firstly propose an approximation on 2-
hop CDS (TCDS) and then generalize it on d-hop CDS
problem. Different from the spanning method, we present a
greedy algorithm which includes the spanning tree method.
We analysis the approximation ratio of the algorithm and show
that the ratio is at most min{2β, (β+2+2H(β−1))}, where
β is the approximation ratio of the first-step and H(·) is the
harmonic function.

The rest of this paper is organized as follows. In section 2,
we introduce some basic concepts used in this paper. In section
3, we firstly present our greedy algorithm to interconnect a
given 2-hop DS into a 2-hop CDS. Then we show the approx-
imation ratio of the algorithm, and generalize this algorithm
on d-hop CDS problem. Finally, we give the conclusion and
discussion for future works.

II. PRELIMINARY

In this section, we will introduce some useful concepts
and results used in our algorithm and analysis. As the same as
constructing CDS, researches usually use two-step method to
design a d-hop CDS. The first step is finding a d-hop DS, and
researchers always use a maximal d-hop independent set as a
d-hop DS. Given a graph G = (V,E), a d-hop independent set
M is a subset of V (G) such that for any two vertices u and
v in M , the distance between them is at least d. Furthermore,
M is called a maximal d-hop independent set (d-hop MIS),
if we insert any vertex in V \M into M , then M is not an
independent set any more. From the definition, we can see
that any d-hop MIS is a d-hop DS.

In [6], Gao et al. presented a distributed algorithm to
construct a d-hop MIS on UDGs, and this algorithm can
be used in general graphs. Furthermore, the d-hop MIS M
obtained by the algorithm has the following property.

If we divide M into two parts M1 and M2, the distance
between them is d+1.

If a d-hop MIS satisfies this property, we call it a d-hop
MIS with property 1. Easy to see, given such a d-hop MISM ,
we can connect any bipartition of M by adding at most d new
vertices. Repeating this process, we can obtain a d-hop CDS by
adding at most d|M | new vertices. This is the idea of spanning
tree method in second-step. Hence, if the approximation ratio
of the first-step is β, then the approximation ratio of the
second-step is dβ.

Given a graph G = (V,E) and a vertex v, let Nd[v] =
{u|d(u, v) ≤ d} and Nd(v) = Nd[v]\{v}. For example,N(v)
is vertex set including all vertices adjacent to v, called the
neighborhood of v, and N2[v] collects v, all neighbors of v
and all neighbors of neighbors of v. For any vertex subset Y ,
denoted by Nd[Y ] = ∪v∈Y N

d[v] and Nd(Y ) = Nd[Y ]\Y .
For any two vertices u and v, and a shortest path P connecting
them, let Ip(u, v) be the set of all internal vertices in P . If we
omit the subscript P , it means collecting all internal vertices
in any arbitrary shortest path.

Any other notations and terminologies on graph theory and
approximation algorithm does not mentioned here can refer to
textbooks [1], [4].

III. MAIN RESULTS

In this section, we will present a greedy algorithms for
interconnecting the d-hop MIS into a d-hop CDS. To better
illuminate our idea, we firstly consider the special case when
d = 2, and then study the general case.

A. Greedy algorithm for TCDS

At the beginning, we give some useful notations. LetM be
a 2-MIS of G with property 1. For any vertex v of G and any
subsetM0 ofM , denoted by Cv,M0

= N2(v)∩(M−M0) and
C′v,M0

= (∪u∈Cv,M0
I(v, u))

⋃
I(v,M0)

⋃
{v}, which collects

vertex v, all internal vertices in an arbitrary shortest path
connecting v andM0, and all internal vertices in some shortest
paths connecting v and all vertices in Cv,M0

.

The pseudo-code of our algorithm as follows.

Algorithm 1 A greedy algorithm for TCDS
Input: A 2-hop MIS(DS) M with property 1;
Output: A 2-hop CDS D;
1: Initialize: choose an arbitrary vertex u fromM , setM0 :=
{u} and C := ∅;

2: while M0 �= M do
3: find a vertex v ∈ N2(M0) with Cv,M0

as large as
possible; (Note: choosing v in N(M0) possibly, if we can)

4: set M0 := M0 ∪ Cv,M0
and C := C ∪ C′v,M0

;
5: end while
6: return D = C ∪M0;

Theorem 1. The algorithm can terminate in finite steps and
the output is a 2-hop CDS.

Proof: We consider the induced graph G[C∪M0] in each
stage of the algorithm. Since C′v,M0

contains vertices which
interconnect currentM0 and all vertices of Cv,M0

, if the G[C∪
M0] is connected, the updated C ∪M0 induces a connected
subgraph. In initial stage, G[C ∪M0] = G[u] is connected, so
the output D = C ∪M0 = C ∪M is a 2-hop CDS.

To show the algorithm terminates in finite steps, we only
to prove that if M0 �= M , there always exists a vertex v with
|Cv,M0

| ≥ 1. Since the input 2-MIS M satisfying property 1,
we have d(M0,M −M0) = 3. Hence, any internal vertex v in
any shortest path connecting M0 and M −M0 is a candidate
vertex and |Cv,M0

| ≥ 1.

B. Theoretical Analysis

Let β be the ratio of 2-hop MIS and TCDS. The following
theorem gives the approximation ratio of the algorithm.

Theorem 2. When the algorithm terminates, |C| ≤
min{2β, β + 2 + 2H(β − 1)} · opt, where opt is the size of
minimum TCDS and H(·) is the harmonic function.

Proof: To distinct M0 in the algorithm, we use M i
0 to

denote it in stage i and assume that the algorithm terminates
after t stages. At the beginning of the proof, we give each
vertex x in M a value w(x) as follows. For the initial vertex
u, let w(u) = 0 and for any other vertex x ∈ Cv,Mi

0

, let

5555



w(x) =
|C′

v,Mi
0

|

|C
v,Mi

0

| . Based on this definition, we have |C
′
v,Mi

0

| =

w(x) · |Cv,Mi
0

| =
∑

x∈C
v,Mi

0

w(x) and

|C| = |C′v,M1

0

∪ C ′v,M2

0

∪ · · · ∪C′v,Mt
0

|

≤ 0 + |C ′v,M1

0

|+ |C′v,M2

0

|+ · · ·+ |C′v,Mt
0

|

= w(u) +
∑

x∈C
v,M1

0

w(x) + · · ·+
∑

x∈C
v,Mt

0

w(x)

=
∑

x∈M

w(x).

Hence, we can use the sum of value of all vertices in M to
estimate |C|. By the choosing method of C ′v,M0

, we can see
that |C′

v,Mi
0

| ≤ 2 + |Cv,Mi
0

|, that is,

w(x) ≤
2 + |Cv,Mi

0

|

|C′
v,Mi

0

|
= 1 +

2

|Cv,Mi
0

|
. (1)

Easy to see, w(x) ≤ 3 since |Cv,Mi
0

| ≥ 1. But if |Cv,Mi
0

| = 1,
based on the note in line 3, we choose the vertex v in N(M0)
and |C′

v,Mi
0

| = 2 in this case. It implies that w(x) ≤ 2 and

|C| ≤
∑

x∈M

w(x) ≤ 2|M | ≤ 2β · opt. (2)

Next, we will give a partition of V (G). Let S =
{s1, s2, . . . , sm} be a minimum 2-hop CDS in G and V ′ =
V \S. Let Si be union of si and the set of vertices in V ′ which
can be 2-dominated by si only, but cannot be 2-dominated by
any sj with 1 ≤ j ≤ i− 1, that is,

S1 = s1 ∪ (N2[s1] ∩ V ′);

S2 = s2 ∪ ((N2[s2] ∩ V ′)\S1));

S3 = s3 ∪ ((N2[s3] ∩ V ′)\(S1 ∪ S2));
...

...

Si = si ∪ ((N2[si] ∩ V ′)\(
i−1⋃

j=1

Sj));

...
...

Since S is a TCDS of G, {S1, S2, . . . , Sm} is a partition of
V (G) and combined with Eqn. 2, we have

|C| ≤
∑

x∈M

w(x) =

m∑

i=1

(
∑

x∈(M∩Si)

w(x)) (3)

Final, for each si, we will obtain an upper bound of∑
x∈(M∩Si)

w(x). Conveniently, we use M j to denote the set

of vertices which are not containing in the M0 at the end of
stage j, that is, M j = M\M j

0 . Easy to see, M0 = M\{u},
M t = ∅ and |M0| > |M1| > · · · > |M t| = 0. Let
aj = |(M ∩ Si) ∩M j | = |M j ∩ Si|, the number of vertices
in M ∩Si not belonging to M0 at the end of stage j. Clearly,
a0 ≥ a1 ≥ a2 ≥ · · · ≥ at = 0. Now, we will consider the
following conditions based on the a0.

Case 1. a0 = 0. It implies that M ∩ Si = ∅ and
∑

x∈(M∩Si)

w(x) = 0.

Case 2. a0 = 1. It implies that M ∩ Si = {x} and
∑

x∈(M∩Si)

w(x) = w(x) ≤ 2 ≤ a0 + 2 + 2H(a0 − 1).

Case 3. a0 ≥ 2. It implies that si /∈ M . Since any vertex
ofM is valued when it is just added intoM0 in the algorithm,
we can only consider the stages j with aj−1 > aj . Let
j1, j2, . . . , jk be such stages and a0 > aj1 > · · · > ajk = 0.
In j1 stage, there are a0−aj1 vertices in Si added into M0, so
at least a0 − aj1 vertices added into M0 of G. It implies that
|Cv,M0

| ≥ a0 − aj1 and w(x) ≤ 1 + 2
|C

v,Mi
0

| ≤ 1 + 2
a0−aj1

.
Thus, the total value of vertices added into M0 in Si ∩M at
this stage is at most (a0 − aj1) · (1 + 2

a0−aj1

). In any other
stage jq with q ≥ 2, there exists some vertex v in Si ∩M
already belonging to M0 because of ajq−1

< a0. Hence, si is
a candidate vertex of this stage and |Cv,M0

| ≥ ajq−1
now.

Thus, we have w(x) ≤ 1 + 2
ajq−1

and the total value of
vertices added into M0 in Si ∩ M at this stage is at most
(ajq−1

− ajq ) · (1 +
2

ajq−1

). As above, we can obtain that

∑

x∈(M∩Si)

w(x) ≤ (a0 − aj1) · (1 +
2

a0 − aj1
)

+
k∑

q=2

(ajq−1
− ajq ) · (1 +

2

ajq−1

)

= (a0 − aj1) +

k∑

q=2

(ajq−1
− ajq )

+ 2(1 +

k∑

q=2

(ajq−1
− ajq ) ·

1

ajq−1

)

≤ (a0 − ajk) + 2

+ 2(

k∑

q=2

(
1

ajq−1

+
1

ajq−1
− 1

+ · · ·+
1

ajq + 1
)

= a0 + 2(1 +H(aj1))

≤ a0 + 2 + 2H(a0 − 1)

To distinct each si, let ai0 = |(M ∩ Si)|. Based on the
above 3 cases and combined with Eqn. 3, we have

|C| ≤
m∑

i=1

(
∑

x∈(M∩Si)

w(x))

≤
m∑

i=1

(ai0 + 2 + 2H(ai0 − 1))

=

m∑

i=1

ai0 + 2m+

m∑

i=1

2H(ai0 − 1))

≤ |M |+ 2m+ 2m ·H( max
1≤i≤m

{ai0} − 1)

≤ β · opt+ 2 · opt+ 2H(β − 1) · opt

= (β + 2 + 2H(β − 1)) · opt
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Combined with Eqn. 2, the proof is done.

C. Generalization

Our algorithm can be easily generalized to d-hop CDS
problem, if we replace 2 by d in the algorithm and the
definition of Cv,M0

. Using the same method to analysis the
generalized algorithm, we can show that the size of output is
at most min{dβ, (d− 1)β + d+ dH(β − 1)} · opt.

IV. CONCLUSION

In this paper, we firstly present a greedy algorithm for
interconnecting a given 2-hop MIS into a 2-hop CDS. And
then, we show that the approximation ratio of the algorithm is
min{2β, β + 2+ 2H(β − 1)}, where β be the ratio of 2-MIS
and TCDS and H(·) is the harmonic function, which is better
than that of spanning tree method. Final, we generalize the
algorithm into general case.

Actually, there are a lot of future works on this problem.
For example, recalling the algorithm, the longest distance
between M0 and Cv,M0

is 2d. So we can construct the d-
hop MIS with nearest distance 2d instead of d+1 and if we do
this, the size of d-hop MIS in the first-step may be reduced.
On the other side, we can search the vertices in Nd/2(M0)
and compare the size of union of these d+1

2 -neighborhood and
M\M0. To do this can decrease the number of connectors, but
it is may difficult to analysis the approximation ratio.
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